Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 501
Filtrar
1.
Sci Total Environ ; 928: 172475, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38621541

RESUMO

The link between biodiversity and ecosystem multi-functionality is an ongoing concern in ecological studies. Ecologists have focused on soil quality (SQ) as an ecosystem function and its relationship to biodiversity. Developing an appropriate and sensitive soil quality index (SQI) is critical, but it is severely restricted particularly in the forests. This study determined the most appropriate SQI for both protected and unprotected areas of Arasbaran biosphere reserve forests (Northwest Iran), as well as its relationship to the diversity of three layers of forest plant species (tree, tree regeneration, and forest floor plant cover), NDVI index, and litter amount. Three approaches were utilized to establish SQI for two types of soil data sets, including total data set (TDS) (pH, EC, SP. OC, caco3, clay, silt, sand, N, P, K, BD, gravel, C·N) and the minimum data sets (MDS) (SP. OC, clay, silt, N, K, BD, C·N): (1) SQI-1 (simple additive), (2) SQI-2 (Nemero quality index), and (3) SQI-3 (weighted additive modeled). Three SQI strategies were assessed using three different methods: Overall Sensitivity Index, Efficiency Index and Sensitivity Index. The findings revealed that the SQI-3 is the best SQI for employing only a limited number of soil properties (MDS). The findings revealed that the SQI-3 has a positive and significant relationship with the Evenness-tree and Taxa-Regeneration in the protected region (P-Value: 0.02). In contrast, the SQI-3 has a negative correlation with the NDVI (Normalized Difference vegetation Index) (P-Value: 0.02) but a positive significant relationship with the litter and Taxa-Grass indicators in the unprotected region (P-Value: 0.00). The study's findings demonstrated that forest preservation affected the link between the SQI and the studied parameters. As a result, it is concluded that biodiversity-ecosystem function is impacted by management changes and cannot be maintained constant under varied management conditions. This shift in the links between plant and SQ emphasizes the fact that plants biodiversity loss and SQ can have particularly severe consequences in non-protective conditions, necessitating biodiversity conservation measures to mitigate the effects of conservation.

2.
Environ Monit Assess ; 196(5): 462, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642132

RESUMO

Regenerative agricultural practices, i.e. organic and natural farming, are rooted in India since ancient times. However, the high cost of production, lack of organic pest control measures and premium price of organic produces in chemical agriculture encourage natural farming. In the present study, the quality improvement of calcareous soils under organic (OGF) and natural (NTF) management was compared with integrated conventional (ICF) and non-invasive (NIF) farming practices with cotton-sorghum crops over three consecutive years. A total of 23 soil attributes were analyzed at the end of the third cropping cycle and subjected to principal component analysis (PCA) to select a minimum data set (MDS) and obtain a soil quality index (SQI). The attributes soil organic carbon (SOC), available Fe, pH, bulk density (BD) and alkaline phosphatase (APA) were selected as indicators based on correlations and expert opinions on the lime content of the experimental soil. The SQI was improved in the order of OGF (0.89) > NTF(0.69) > ICF(0.48) > NIF(0.05). The contribution of the indicators to SQI was in the order of available Fe (17-44%) > SOC (21-28%), APA (11-36%) > pH (0-22%), and BD (0-20%) regardless of the farming practices. These indicators contribute equally to soil quality under natural (17-22%) and organic (18-22%) farming. The benefit:cost ratio was calculated to show the advantage of natural farming and was in the order of NTF(1.95-2.29), ICF (1.34-1.47), OGF (1.13-1.20) and NIF (0.84-1.47). In overall, the natural farming significantly sustained the soil quality and cost benefit compared to integrated conventional farming practices.


Assuntos
Solo , Sorghum , Solo/química , Carbono/análise , Monitoramento Ambiental , Agricultura , Grão Comestível/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-38558338

RESUMO

With the extensive development of nuclear energy, soil uranium contamination has become an increasingly prominent problem. The development of evaluation systems for various uranium contamination levels and soil microhabitats is critical. In this study, the effects of uranium contamination on the carbon source metabolic capacity and microbial community structure of soil microbial communities were investigated using Biolog microplate technology and high-throughput sequencing, and the responses of soil biochemical properties to uranium were also analyzed. Then, ten key biological indicators as reliable input variables, including arylsulfatase, biomass nitrogen, metabolic entropy, microbial entropy, Simpson, Shannon, McIntosh, Nocardioides, Lysobacter, and Mycoleptodisus, were screened by random forest (RF), Boruta, and grey relational analysis (GRA). The optimal uranium-contaminated soil microbiological evaluation model was obtained by comparing the performance of three evaluation methods: partial least squares regression (PLS), support vector regression (SVR), and improved particle algorithm (IPSO-SVR). Consequently, partial least squares regression (PLS) has a higher R2 (0.932) and a lower RMSE value (0.214) compared to the other. This research provides a new evaluation method to describe the relationship between soil ecological effects and biological indicators under nuclear contamination.

4.
J Environ Manage ; 358: 120889, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38652993

RESUMO

Evaluating soil quality (SQ) resulting from land management use impact is important for soil carbon (C) monitoring, land sustainability and suitability. However, the data in less developed regions of Africa like Nigeria is scarce, limiting our understanding at global scale. The study evaluated land management use on soil quality in Ebonyi State, Nigeria, a representative region of Africa. Soil samples were collected in 2021 and resampled in 2022 from regions including five land use managements (FS = forest soil; GLS = grass land soil; ACS = alley cropping Soil; SDS = sewage dump-soils; CCS = continuously cultivated soil). Soil physical and chemical properties were analyzed and discussed. The results shows that soil physical properties (bulk density, hydraulic conductivity, aggregate stability) were significantly (P < 0.05) influenced by land use management. Moderate to high bulk density, very low hydraulic conductivity (HC), and low aggregate stability were observed across land management, suggesting potential inhibition to root penetration, poor aeration, and water infiltration. Improved land management practices such as planting of cover crops either for re-grassing or addition of crop residues could be adopted as conservative options for increasing soil quality and encourage additional soil C. Soil pH decreased with the increase in soil depth in all land uses for both years. A higher soil pH of 6.78 (slightly acidic) was seen in SDS and lower mean 6.0 (moderately acidic) was obtained in CCS at 0-20 cm in 2021. The average mean nitrogen content was rated "very high" (0.81 g kg-1 and 0.69 g kg-1) in 2021 and 2022 respectively, suggesting nitrogen might not be a limiting factor for plant growth in the region. During the 2021 and 2022 study periods, the overall average mean C stock were 12.71 g kg-1 and 15.87 g kg-1 respectively suggesting 3.1 g kg-1 C stock increment in 2022. Soil inorganic C also increased by 9.86 g cm-2 in 2022. The study provided crucial information about how land management use affected soil physico-chemical properties including C stock and suggested that C stock could be improved by adopting appropriate land management use practices. The results fill a data gap in under-studied regions, but also facilitate potential land management practices.

5.
Front Plant Sci ; 15: 1358213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628369

RESUMO

When grapevine decline, characterized by a premature decrease in vigor and yield and sometimes plant death, cannot be explained by pathological or physiological diseases, one may inquire whether the microbiological status of the soil is responsible. Previous studies have shown that the composition and structure of bacterial and fungal microbial communities in inter-row soil are affected in areas displaying vine decline, compared to areas with non-declining vines within the same plot. A more comprehensive analysis was conducted in one such plot. Although soil chemical parameters could not directly explain these differences, the declining vines presented lower vigor, yield, berry quality, and petiole mineral content than those in non-declining vines. The bacterial and fungal microbiome of the root endosphere, rhizosphere, and different horizons of the bulk soil were explored through enzymatic, metabolic diversity, and metabarcoding analysis in both areas. Despite the lower microbial diversity and richness in symptomatic roots and soil, higher microbial activity and enrichment of potentially both beneficial bacteria and pathogenic fungi were found in the declining area. Path modeling analysis linked the root microbial activity to berry quality, suggesting a determinant role of root microbiome in the berry mineral content. Furthermore, certain fungal and bacterial taxa were correlated with predicted metabolic pathways and metabolic processes assessed with Eco-Plates. These results unexpectedly revealed active microbial profiles in the belowground compartments associated with stressed vines, highlighting the interest of exploring the functional microbiota of plants, and more specifically roots and rhizosphere, under stressed conditions.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38594559

RESUMO

Developing an optimal environmentally friendly bioremediation strategy for petroleum products is of high interest. This study investigated heavy fuel oil (HFO)-contaminated soil (4 and 6 g kg-1) remediation by individual and combined bioaugmentation-assisted phytoremediation with alfalfa (Medicago sativa L.) and with cold plasma (CP)-treated M. sativa. After 14 weeks of remediation, HFO removal efficiency was in the range between 61 and 80% depending on HFO concentration and remediation technique. Natural attenuation had the lowest HFO removal rate. As demonstrated by growth rate and biomass acquisition, M. sativa showed good tolerance to HFO contamination. Cultivation of M. sativa enhanced HFO degradation and soil quality improvement. Bioaugmentation-assisted phytoremediation was up to 18% more efficient in HFO removal through alleviated HFO stress to plants, stimulated plant growth, and biomass acquisition. Cold plasma seed treatment enhanced HFO removal by M. sativa at low HFO contamination and in combination with bioaugmentation it resulted in up to 14% better HFO removal compared to remediation with CP non-treated and non-bioaugmented M. sativa. Our results show that the combination of different remediation techniques is an effective soil rehabilitation strategy to remove HFO and improve soil quality. CP plant seed treatment could be a promising option in soil clean-up and valorization.

7.
Environ Geochem Health ; 46(5): 147, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578456

RESUMO

The Qinghai-Tibet Plateau, located at the Third Pole and known as the "Asian water tower," serves as a crucial ecological barrier for China. Grasping the soil quality on the Qinghai-Tibet Plateau holds paramount importance for the rational and scientific exploitation of soil resources within the region and is essential for vegetation restoration and ecological reconstruction. This study, conducted in Maqin County, Qinghai Province, collected 1647 soil samples (0-20 cm) within a study area of 6300 km2. Sixteen soil indicators were selected that were split into beneficial (N, P, S, and B), harmful (Cr, Hg, As, Pb, Ni, and Cd), and essential (Cu, Zn, Se, Ga, K, and Ca) elements. The Soil Quality Index (SQI) was computed to assess soil quality across diverse geological contexts, land cover classifications, and soil profiles. The results indicate that the overall SQI in the study area was comparatively high, with most regions having an SQI between 0.4 and 0.6, categorized as moderately to highly satisfactory. Among the different geological backgrounds, the highest SQI was found in the Quaternary alluvium (0.555) and the lowest in the Precambrian Jinshuikou Formation (0.481). Regarding different land-use types, the highest SQI was observed in glacier- and snow-covered areas (0.582) and the lowest in other types of grassland (0.461). The highest SQI was recorded in typical alpine meadow soil (0.521) and the lowest in leached brown soil (0.460). The evaluation results have significant reference value for the sustainable utilization and management of soil in Maqin County, Qinghai Province, China.


Assuntos
Mercúrio , Solo , Humanos , Tibet , China , Atividades Humanas
8.
Polymers (Basel) ; 16(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611272

RESUMO

Numerous research showed that mulching with conventional agro foils elevates soil temperature and promotes plant growth, but negatively influences soil health and brings environmental concerns. Most of the published research on nonwoven mulches for plant cultivation includes nonwoven fabrics produced by extrusion processes providing nonwoven fabric structures similar to films. A limited number of studies investigate the impact of nonwoven mulches produced by a mechanical process on the cards and bonded by needling on plant cultivation. For this study, nonwoven mulches of mass per unit area of 400 g m-2 made from jute, hemp, viscose (CV), and polylactide (PLA) fibers were produced on the card bonded by needle punching. The field experiment was conducted two consecutive years in a row, in spring 2022 and 2023, by planting lettuce seedlings. The nonwoven mulches maintain lower temperatures and higher soil moisture levels compared to agro foil and the control field. The fibrous structure and their water absorption properties allow natural ventilation, regulating temperatures and retaining moisture of soil, consequently improving soil quality, lettuce yield, and quality. The fiber type from which the mulches were produced, influenced soil temperature and humidity, soil quality, and lettuce cultivation. The nonwoven mulches were successful in weed control concerning the weediness of the control field. Based on the obtained results, the newly produced mulches are likely to yield better results when used for the cultivation of vegetables with longer growing periods. Newly produced biodegradable nonwoven mulches could be an eco-friendly alternative to traditional agro foil, minimizing environmental harm during decomposition. The obtained results suggest that the newly produced mulches would be even more suitable for growing vegetables with longer growing seasons.

9.
Sci Rep ; 14(1): 8491, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605150

RESUMO

The primary objective of this study was to develop soil quality indexes (SQIs) to reveal the changes in SQ during the restoration of vegetation in the reclaimed waste dumps of the Hequ open-pit coal mine. The study built an SQI evaluation model for waste dumps based on the soil management assessment framework. The total data set (TDS) consisted of nine physicochemical property indicators. The selection of the minimum data set (MDS) involved the utilization of principal component analysis (PCA) and Norm values. The SQ was comprehensively evaluated for nine indicators, taking into account the non-linear membership function and the improved Nemerow index. The findings suggested a notable disparity in the SQ between the reclaimed area and the unreclaimed area, yet the overall SQ fell short. In the TDS index system, the organic matter has the highest weight and a greater contribution to the soil quality of the waste dumps. In the MDS indicator system, the weights of organic matter and total nitrogen are both 0.5. According to Nemerow index method, the average SQIN of 5 plots is calculated to be 0.4352 ± 0.194. The average value obtained from TDS is 0.581 ± 0.236, and the average value obtained from MDS is 0.602 ± 0.351. The weighted additive method was employed to compute three SQIs, all of which yielded satisfactory outcomes. And the above evaluation methods indicate that the overall soil quality level of the waste dumps is at a moderate level. The sequence of SQ in various waste dumps was as follows: No.4lower > No.1 > No.2 > No.3 > No.4upper. Specifically, the non-linear membership function indicated that pH, available nitrogen (AN), available phosphorus (AP), surface moisture content (SMC), and bulk density (BD) were crucial in limiting SQIs in total waste dumps. The crucial limiting SQIs in unreclaimed areas were total phosphorus (TP) and total nitrogen (TN). This analysis demonstrates its efficacy in formulating strategies for the SQ evaluation and targeted soil reclamation plans of waste dumps.

10.
Plants (Basel) ; 13(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38592872

RESUMO

The change in land use in the Brazilian Cerrado modifies the dynamics of soil organic matter (SOM) and, consequently, carbon (C) stocks and their fractions and soil enzyme activities. This study evaluated the effect of brachiaria (Brachiaria decumbens Stapf.) intercropped with Arabica coffee (Coffea arabica L.) on the stock and fractions of soil carbon and enzyme activities. The experiment was arranged in a completely randomized block design with three replications and treatments in a factorial design. The first factor consisted of coffee with or without intercropped brachiaria, the second of Arabica coffee cultivars ('I.P.R.103' and 'I.P.R.99') and the third factor of the point of soil sampling (under the canopy (UC) and in inter-rows (I)). Soil was sampled in layers of 0-10, 10-20, 20-30, 30-40, 40-60 and 60-80 cm. Soil from the 0-10 cm layer was also used to analyze enzymatic activity. Significant effects of coffee intercropped with brachiaria were confirmed for particulate organic carbon (POC), with highest contents in the 0-10 and 20-30 cm layers (9.62 and 6.48 g kg-1, respectively), and for soil enzymes (280.83 and 180.3 µg p-nitrophenol g-1 for arylsulfatase and ß-glucosidase, respectively).

11.
Curr Res Microb Sci ; 6: 100227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444877

RESUMO

The continuous depletion of fossil resources, energy-crisis and environmental pollution has gained popularity for careful selection of suitable microbial consortium to efficiently decompose crop residue and facilitate nutrient cycling. While crop residue is commonly incorporated into soil, the impact of the heterogeneity of residue on decomposition and biological mechanisms involved in extracellular carbon (C) cycle related enzyme activities remain not fully understood. To address this problem, an incubation study was conducted on chemical heterogeneity of straw and root residue with indigenous ligno-cellulolytic microbial consortium on extracellular enzymes as their activity is crucial for making in-situ residue management decisions under field condition. The activity of extracellular enzymes in different substrates showed differential variation with the type of enzyme and ranged from 16.9 to 77.6 µg mL-1, 135.7 to 410.8 µg mL-1, 66.9 to 177.1 µg mL-1 and 42.1 to 160.9 µg mL-1 for cellulase, xylanase, laccase and lignin peroxidase, respectively. Extracellular enzyme activities were sensitive to heterogeneity of biochemical constituent's present in straw and root residues and enhanced the decomposition processes with indigenous ligno-cellulolytic microbial consortium (Bacillus altitudinis, Streptomyces flavomacrosporus and Aspergillus terreus). Correlation matrix elucidated A. terreus and B. altitudinis as potential indigenous ligno-cellulolytic microbial inoculant influencing soil enzymatic activity (p < 0.001). This research work demonstrates a substantial impact of chemically diverse crop residues on the decomposition of both straw and root. It also highlights the pivotal role played by key indigenous decomposers and interactions between different microorganisms in governing the decomposition of straw and root primarily through release of extracellular enzyme. Consequently, it is novel bio-emerging strategy suggested that incorporation of the crop residues under field conditions should be carried out in conjunction with the potential indigenous ligno-cellulolytic microbial consortium for efficient decomposition in the short period of time under sustainable agriculture system.

12.
Heliyon ; 10(5): e27577, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463776

RESUMO

Assessing soil quality marks the initial step in precision farming and agricultural management. Developing countries like Egypt face numerous hurdles in ensuring food security due to increasing populations and limited agricultural resources. A geographic information system (GIS) and multivariate analysis were utilized in the current work to evaluate and map a soil quality index (SQI). Moreover, the land suitability of the land for two plantations of the tree's oak (Quercus robur), and pine (Pinus silvestris), respectively was assessed using a parametric approach. A total of 82 soil profiles were selected to fulfill the objectives of the study. Based on the samples' PC scores, and agglomerative hierarchical clustering (AHC, the data was divided into two clusters: Cluster I and Cluster II, which collectively account for approximately 57% and 43% of the total data, respectively.. . The findings indicated that land suitability for planting Q. robur planted identified 2.14% of the research area as highly suitable (S1), 37.98% as moderately suitable (S2), and 59.89% as not suitable (N). Furthermore, the assessment of suitability for P. silvestris indicated that 50.88% of the investigated area was classified into: S1, 48.73% as S2, and 0.39% as N, which means it is not suitable for conservation activities. The research identified that soil depth beside excessive salinity and calcium carbonate as the primary soil constraints in the area in both clusters. The average soil depth, ECd and CaCO3 were 113.62 ± 12.41, 17.27 ± 10.23, 16.83 ± 6.57 in Cluster 1 and 45.43 ± 15.21, 22.42 ± 12.43, 21.55 ± 5.63 in Cluster II. The study demonstrates that integrating multivariate analysis with GIS enables a precise and streamlined assessment of the Soil Quality Index (SQI). Soil suitability modelling underscores the importance of implementing efficient management practices to attain agricultural sustainability in arid regions, particularly amidst intensive land utilization pressures.

13.
Plants (Basel) ; 13(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38475554

RESUMO

Long-term plant residue retention can effectively replenish soil quality and fertility. In this study, we collected rhizosphere soil from the residual roots of annual Cenchrus fungigraminus in the Ulan Buh Desert over the past 10 years. The area, depth, and length of these roots decreased over time. The cellulose content of the residual roots was significantly higher in the later 5 years (2018-2022) than the former 5 years (2013-2017), reaching its highest value in 2021. The lignin content of the residual roots did not differ across samples except in 2015 and reached its highest level in 2021. The total sugar of the residual roots in 2022 was 227.88 ± 30.69 mg·g-1, which was significantly higher than that in other years. Compared to the original sandy soil, the soil organic matter and soil microbial biomass carbon (SMBC) contents were 2.17-2.41 times and 31.52-35.58% higher in the later 3 years (2020-2022) and reached the highest values in 2020. The residual roots also significantly enhanced the soil carbon stocks from 2018-2022. Soil dehydrogenase, nitrogenase, and N-acetyl-ß-D-glucosidase (S-NAG) were significantly affected from 2019-2022. The rhizosphere soil community richness and diversity of the bacterial and fungal communities significantly decreased with the duration of the residual roots in the sandy soil, and there was a significant difference for 10 years. Streptomyces, Bacillus, and Sphigomonas were the representative bacteria in the residual root rhizosphere soil, while Agaricales and Panaeolus were the enriched fungal genera. The distance-based redundancy analysis and partial least square path model results showed that the duration of residual roots in the sandy soil, S-NAG, and SMBC were the primary environmental characteristics that shaped the microbial community. These insights provide new ideas on how to foster the exploration of the use of annual herbaceous plants for sandy soil improvement in the future.

14.
Sci Total Environ ; 924: 171707, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38490429

RESUMO

Soil salinization is one of the major soil degradation threats worldwide, and parameters related to soil quality and ecosystem multifunctionality (EMF) are crucial for evaluating the success of reclamation efforts in saline-sodic wasteland (WL). Microbial metabolic limitation is also one of the main factors that influences EMF in agricultural cropping systems. A ten-year localization experiment was conducted to reveal the key predictors of soil quality index (SQI) values, microbial metabolic characteristics, and EMF in different farmland cropping systems. A random forest model showed that the ß-glucosidase (BG), cellobiosidase (CBH) and saturated hydraulic conductivity (SHC) of the SQI factors were the main driving forces of soil EMF. Compared to monoculture models, such as paddy field (PF) or upland field (UF), the converted paddy field to upland field (CF) cropping system was most effective at improving EMF in reclaimed saline-sodic WL, increasing this metric by 275.35 %. CF integrates practices from both PF and UF planting systems, improved soil quality and relieves microbial metabolic limitation. Specifically, both CF and PF significantly reduced soil pH (by 16-23 %) and sodium adsorption ration (SAR) (by 65-83 %) and significantly reduced the abundance of large macroaggregates. Moreover, CF significantly improved soil saturated hydraulic conductivity relative to PF and UF (p < 0.05), indicating an improvement in soil physical properties. Overall, although reclamation improved SQI compared to WL (0.25), the EMF of CF (0.56) was significantly higher than that of other treatments (p < 0.05). Thus, while increasing SQI can improve soil EMF, it was not as effective alone as it was when combined with more comprehensive efforts that focus on improving various soil properties and alleviating microbial metabolic limitations. Therefore, our results suggested that future saline-sodic wasteland reclamation efforts should avoid monoculture systems to enhance soil EMF.


Assuntos
Ecossistema , Solo , Solo/química , Sódio/química , Adsorção
15.
Environ Geochem Health ; 46(4): 131, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483704

RESUMO

Potato is one of the essential food products whose health quality is greatly influenced by soil contamination and properties. In the current study, we have investigated the physicochemical characteristics of agricultural areas and the accumulation of nitrite/nitrate and metals in potato products in Hamedan, Iran. After determining the physicochemical characteristics of soil samples from four agricultural regions of Hamedan, 48 potato samples were collected from these regions. The heavy metals and nitrate/nitrite content were determined by ICP-OES and calorimetric methods, respectively. A negative correlation was observed between soil pH changes with nitrite/nitrate content and the accumulation of some heavy elements in potatoes. Furthermore, a positive correlation was found between soil phosphorus content and lead accumulation in potato. In present study, the amounts of lead, nitrate, and nitrite in 83.3%, 56%, and 12% of the collected samples were higher than the permissible limit reported by the World Health Organization (WHO), respectively. The EDI range for nitrate and nitrite was determined to be 130-260 and 1.4-2.7 µg/kg/day, respectively, which is much lower than the RfD set by the US Environmental Protection Agency (USEPA) for nitrite and nitrate. Among metal pollutants, the toxic risk caused by lead in potato consumers was higher than the threshold limit. In conclusion, our findings showed that the physicochemical characteristics of the soil could effectively increase the availability of metal pollutants and nitrite/nitrate to the potato product and significantly reduce its health quality. Therefore, monitoring these pollutants in the soil-potato system, preventing the entry of industrial wastewater, and managing the use of agricultural fertilizers can effectively improve the health of this product for consumers.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes do Solo , Solanum tuberosum , Solo , Nitratos , Nitritos , Irã (Geográfico) , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Medição de Risco , Monitoramento Ambiental
16.
Sci Total Environ ; 926: 171916, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522536

RESUMO

Dredging wastewater discharge is a significant environmental concern for mariculture near mangrove ecosystems. However, little attention has been paid to its effects on the soil physical-chemical properties and enzyme activities in mangrove habitats. This study compared the soil physical-chemical properties and enzyme activities in the polluted area that received dredging wastewater from a shrimp pond with those in the control area without wastewater to explore the effects of wastewater discharge on the soil physical-chemical properties and enzyme activities. Variations in soil physical-chemical properties and enzyme activities across different tidal flat areas and depths were also examined. The polluted area exhibited lower soil salinity (10.47 ± 0.58 vs. 15.64 ± 0.54) and moisture content (41.85 ± 1.03 % vs. 45.81 ± 1.06 %) than the control area. Wastewater discharge increased soil enzyme activities, (acid phosphatase, protease, and catalase), resulting in higher inorganic nitrogen (13.20 ± 0.00 µg g-1 vs. 11.60 ± 0.03 µg g-1) but lower total nitrogen (0.93 ± 0.01 mg g-1 vs. 1.62 ± 0.11 mg g-1) in the contaminated zone. From the control to polluted area, there was an approximate increase of 0.43 and 0.83 mg g-1 in soil total phosphorus and soluble phosphate, driven by increased acid phosphatase. However, soil humus and organic matter decreased by 0.04 and 1.22 %, respectively, because of wastewater discharge. The impact of wastewater discharge on the soil physical-chemical properties and enzyme activities was most pronounced in the landward and surface soil layers (0-5 cm). The results showed that wastewater discharge altered soil physical-chemical properties and enzyme activities, accumulating soil bioavailable nutrients (inorganic nitrogen and soluble phosphate), but at the cost of reduced soil quality, especially organic matter, further adversely affecting the overall health of mangrove ecosystems. Prioritizing the management of wastewater discharged from mariculture adjacent to mangrove forests is crucial for mangrove conservation.


Assuntos
Ecossistema , Solo , Solo/química , Águas Residuárias , Lagoas , Áreas Alagadas , Fosfatos , Fosfatase Ácida , Nitrogênio/análise
17.
Artigo em Inglês | MEDLINE | ID: mdl-38517633

RESUMO

Anaerobic digestate is a popular soil additive which can promote sustainability and transition toward a circular economy. This study addresses how anaerobic digestate modifies soil health when combined with a common chemical fertilizer. Attention was given to soil microbes and, a neglected but of paramount importance soil taxonomic group, soil nematodes. A mesocosm experiment was set up in order to assess the soil's microbial and nematode community. The results demonstrated that the microbial diversity was not affected by the different fertilization regimes, although species richness increased after digestate and mixed fertilization. The composition and abundance of nematode community did not respond to any treatment. Mixed fertilization notably increased potassium (K) and boron (B) levels, while nitrate (NO3-) levels were uniformly elevated across fertilized soils, despite variations in nitrogen input. Network analysis revealed that chemical fertilization led to a densely interconnected network with mainly mutualistic relationships which could cause ecosystem disruption, while digestate application formed a more complex community based on bacterial interactions. However, the combination of both orchestrated a more balanced and less complex community structure, which is more resilient to random disturbances, but on the downside, it is more likely to collapse under targeted perturbations.

18.
Sci Total Environ ; 923: 171445, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442757

RESUMO

While risk-based contaminated land management is an essential component of sustainable remediation, uncertainty is an unavoidable aspect of risk assessment, since most of the parameters that influence risk are typically affected by uncertainty. Uncertainty may be of different origins; i.e., stochastic or epistemic. Stochastic (or aleatoric) uncertainty arises from random variability related to natural processes, while epistemic uncertainty arises from the incomplete/imprecise nature of available information. But the latter is rarely considered in risk assessments, with the result that risk-based soil quality objectives are almost invariably presented as precise (unique) threshold values. In this paper it is shown: (i) how the joint treatment of stochastic and epistemic uncertainty in risk assessment can lead to soil quality objectives presented as intervals rather than precise values and (ii) how this provides an upper risk-based safeguard for post-remediation monitoring values. The proposed method is illustrated by a real case of soils contaminated by arsenic located in the North-East of France. At this site steel manufacturers have gradually filled up a small valley with slag and dust, over more than a century. These materials are enriched in various metal(loid)s, including arsenic and lead. As the environmental authority has asked for a conversion of the site to other uses that may involve access by the general public, an investigation of human health risk was performed based on a sampling campaign and chemical characterizations including various types of extractions and an analysis of bioaccessibility. While further investigations are required to improve the bioaccessibility model, the human health risk presented herein shows how partial or imprecise information can be incorporated in the analysis while taking into account underlying uncertainties.

19.
Heliyon ; 10(6): e28032, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524604

RESUMO

Gas flaring, a common practice in many countries, has been associated with environmental and health concerns. A recent study in Bangladesh's largest gas field, Kailashtilla, assessed the influence of gas flaring on soil quality in the surrounding areas. Physical, chemical, and microbiological characteristics were assessed on soil samples collected from three union zones. Considerable influences have been found on soil quality, with several physical and chemical characteristics failing to meet the standards for healthy plant growth. Heavy metal contamination in the earth's soil was identified, specifically cadmium and lead, having a risk index indicating a moderate risk to the ecosystem in the future. Gas flaring also impacted the amount of bacteria in the soil, with the highest number being found farthest from the flaring zone. The soil was only marginally contaminated and potential health risks found. AAS and digestion methods were used to estimate the content of heavy metal contamination in the soil. To depict the geographically distributed abundance of heavy metals in the study area, the Kriging spatial interpolation procedure was utilized, and PCA and CA were used to assess the condition of soil. Findings indicate that particular gas flaring may have a deleterious influence on soil bacteria, which could have further consequences for the ecosystem. The study is likely to contribute to our understanding of the current state of soil's surrounding gas fields and serve as a platform for future research in this area emphasizing the necessity for sustainable energy methods and the importance of limiting environmental repercussions.

20.
Heliyon ; 10(5): e25611, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434348

RESUMO

Land and water degradation caused by soil erosion and climate change pose major environmental threats, particularly in agricultural watersheds. Soil erosion in a catchment leads to low crop yields due to declining soil quality (SQ), productivity and sustainability. However, very few studies have been done to assess soil health in Kenya, and none in Narok County. Thus, the aim of this study was to evaluate the soil sustainability status in Kakia-Esamburmbur catchment, based on the identification of key indicators (IKI) from a large dataset (LDS) of 23 indicators, across three land use types designated as grass land (GL), crop land (CL) and forest land (FL). To achieve the stated objective, two soil quality indexing methods were employed: the Additive Soil Quality Index (A-SQI) using the LDS; and the Weighted Soil Quality Index (W-SQI) using Principal Component Analysis (PCA) as a reduction tool to obtain the IKI set. The results show that at a depth of 20 cm, the catchment's soils characteristics did not differ significantly. The two methods (A-SQI and W-SQI) resulted in FL having the highest SQI mean values (0.61, 0.57), followed by CL (0.59, 0.55), while the lowest SQI mean value was recorded in GL (0.58, 0.53). Additionally, the sensitivity analysis showed W-SQI as the most sensitive and superior method in the evaluation of SQI changes due to its high sensitivity and coefficient of variation (CV), at 2.25 and >12 %, respectively. Among the ten IKI, CEC made the greatest contribution to SQ (18.68 %), followed by BD (15.61 %), BIR (14.71 %), Mg (14.26 %), MBN (8.30 %), MBC (8.26 %), Sand (6.77 %), Moisture (5.75 %), TOC (5.16 %), and PMN (2.63 %). The findings show that the catchment belongs to the "medium" category of SQ. The IKI can help save time and reduce the cost of intensive lab works for temporal assessment and monitoring of the effects of different land use on SQ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...